

TRAITEMENTS DE SURFACES

PAR PLASMA

Du 27 au 31 mars 2017 à Grenoble INP

INSCRIPTION

Grenoble INP - Formation continue Katia Plentay • 04 76 57 45 03
katia.plentay@grenoble-inp.fr

RENSEIGNEMENTS

LPSC Grenoble

Stéphane Bechu • 04 76 28 40 89 stephane.bechu@ujf-grenoble.fr

formation-continue.grenoble-inp.fr

PROGRAMME

DF I A FORMATION

Partie théorique (durée 24 heures)

Initiation au plasma

définitions, fonction de distribution effets collectifs en plasma illimité plasma limité (diffusion, pertes)

Interactions Plasma Générateur R.F. (13,56 MHz)

architecture de la boite d'accord effet des modes de couplage (capacitif, inductif) exemples industriels

Production de plasmas froids

décharges continues décharges basse fréquence et radiofréquence décharges micro-onde

Méthodes de diagnostic optique

dispositif expérimental spectroscopie d'émission spectroscopie d'absorption

Introduction à l'interaction particulessurface

interaction neutres thermiques – surface interaction ions-surface interaction plasma-surface

Modèles d'interaction plasma-surface

adsorption et désorption mécanismes et cinétiques de réactions

Dépôt et traitement de polymères par plasmas

propriétés physiques et chimiques des dépôts fonctionnalisation des surfaces de polymères réalisations industrielles, tendances

Interaction plasma-polymères

mécanismes fondamentaux cinétiques de croissance-modélisation

Croissance de films minces en plasma

processus fondamentaux en CVD assistée par plasma dépôts de diamant dépôts de films de carbone amorphe adamantin

Applications des plasmas aux traitements thermochimiques et dépôts CVD assistés

traitements thermochimiques : mécanismes de base et exemples : nitruration, carburation, oxydation dépôts CVD assistés : processus fondamentaux et exemples de dépôts à caractère mécanique

Applications des techniques plasmas à la microélectronique

gravure plasma choix du réacteur de gravure exemple de gravure d'un contact

Partie pratique (durée 12 heures)

Manipulation n°1

Caractérisation d'un plasma par sonde électrostatique Acquisition d'une caractéristique I(V) et détermination des potentiels plasma et flottant, des densités électronique et ionique, de la température électronique.

Manipulation n°2

Utilisation de l'actinométrie pour la caractérisation d'un plasma Mesure des flux de neutres réactifs dans un plasma de diffusion produit par une décharge micro-onde

Manipulation n°3

Dépôt de ${\rm SiO_2}$ à température ambiante à partir d'un plasma de ${\rm SiH_4}$ / ${\rm O_2}$ Gravure des couches obtenues en plasma de ${\rm SF_6}$

Institut polytechnique de Grenoble